• 陈永保

教师名录

基本信息
姓名:陈永保
通讯地址:Bsports网页版一办205
电话:021-55272106
邮箱:chenyongbao@usst.edu.cn
主要研究领域:(1)建筑节能、建筑暖通空调系统优化、能源系统需求响应控制技术 (2)能源大数据分析与应用 (3)人工智能&机器学习
教育背景与工作经历
代表性研究成果
荣誉与奖励
主讲课程

教育背景与工作经历

2023/07-至今Bsport体育在线官网,能源与动力工程学院,副教授,硕导

2023/05-2023/07,Bsport体育在线官网,Bsports网页版,讲师

2020/05-2023/05,Bsport体育在线官网,Bsports网页版,博士后

2016/12-2018/06Karlsruhe Institute of Technology (Germany),博士联培

2015/09-2020/03,同济大学,供热、供燃气、通风及空调工程,博士

2012/09-2015/07,Bsport体育在线官网,动力工程,硕士


——每年硕士研究生招生名额2-4名,欢迎对“人工智能&机器学习、大数据建模等先进技术应用于能源领域,旨在让系统更智能,让生活更美好!”感兴趣的同学报考,联系邮箱:chenyongbao@usst.edu.cn, 联系电话:18818262667。期待您的加入,you will be the best!


代表性研究成果

主持科研项目:

Ø  数据驱动的公共建筑短期空调负荷预测关键特征变量集研究,国自然青年基金, 国家自然科学基金委员会, 2023.01-2025.1252208116主持

Ø  基于建筑大数据的短时电力负荷预测及供需协同控制研究,博后面上项目, 中国博士后科学

基金会,2020.12-2023.052020M681347主持

Ø  可再生能源风能、太阳能发电量预测方法研究,“超级博士后”激励计划,上海市人力资源和社会保障局,2021.01-2022.122020334主持

Ø  “开放式”热泵系统智能化分析与运行技术设计开发(一期),企业横向课题,昊姆(上海)节能科技有限公司,2023.03-2024.03主持

Ø  基于工业大数据的深度学习智能视觉检测项目,杨浦区博士后创新实践项目,2022.05-2023.05主持

Ø  冷却设备数字/智能化选型软件开发,广东格菱冷却设备有限公司,2023.06-2024.06主持

Ø  冷却设备一体化选型软件开发,诺雪(上海) 制冷设备有限公司,2023.07-2024.07主持

Ø  冷却塔计算软件开发,巴普(中国)冷却设备有限公司,2020.10-2021.09主持

代表性论文:

Ø   Yongbao Chen*, Qiguo Yang, Zhe Chen, Chengchu Yan, Shu Zeng, Mingkun Dai. Physics-informed neural networks for building thermal modeling and demand response control. Building and Environment (SCI一区TOP, IF: 7.093, ISSN: 0360-1323) 234, (2023). Published date: 2023-4-15WOS: 000951541300001

Ø  Yongbao Chen, Yunyang Ye*, Jingnan Liu, Lixin Zhang, Weilin Li, Soheil Mohtaram.Machine learning approach to predict building thermal load considering feature variable dimensions: an office building case study. Buildings (SCI三区, IF: 3.324, ISSN: 2075-5309) 13(2), (2023). Published date: 2023-02WOS: 000938354500001

Ø  Yongbao Chen, Zhe Chen*. Short-term load forecasting for multiple buildings: A length sensitivity-based approach. Energy Reports (SCI二区, IF: 4.937, ISSN: 2352-4847) 8, (2022). Published date: 2022-11-01WOS: 000911496300014

Ø  Yongbao Chen*, Mingyue Guo, Zhisen Chen, Zhe Chen, Ying Ji. Physical energy and data-driven models in building energy prediction: A review. Energy Reports (SCI二区, IF: 4.937, ISSN: 2352-4847) 8, (2022). Published date: 2022-11-01WOS: 000783891300005

Ø  Yongbao Chen*, Junjie Xu . Solar and wind power data from the Chinese State Grid Renewable Energy Generation Forecasting Competition. Scientific Data (Nature 子刊,SCI二区, IF: 8.501, ISSN: 2052-4463) 9(1), (2022). Published date: 2022-09-21WOS: 000856120500001

Ø  Yongbao Chen*, Zhe Chen, Xiaolei Yuan, Lin Su, Kang Li. Optimal Control Strategies for Demand Response in Buildings under Penetration of Renewable Energy. Buildings (SCI三区, IF: 3.324, ISSN: 2075-5309) 12(3), (2022). Published date: 2022-03-17WOS: 000775906000001

Ø  Zhe Chen, Yongbao Chen*, Ruikai He, Jingnan Liu, Ming Gao, Lixin Zhang.Multi-objective residential load scheduling approach for demand response in smart grid. Sustainable Cities and Society (SCI二区TOP, IF: 10.696, ISSN: 2210-6707) 76, (2022). Published date: 2022-01-01WOS: 000768216900054

Ø Zhe Chen, Yongbao Chen*, Tong Xiao, Huilong Wang, Pengwei Hou. A novel short-term load forecasting framework based on time-series clustering and early classification algorithm. Energy and Buildings (SCI二区TOP, IF: 7.201, ISSN: 0378-7788) 251, (2021). Published date: 2021-11-15WOS: 000703516600001

Ø Yongbao Chen*, Zhisen Chen, Zhe Chen, Xiaolei Yuan. Dynamic modeling of solar-assisted ground source heat pump using Modelica. Applied Thermal Engineering (SCI二区TOP, IF: 6.465, ISSN: 1359-4311) 196, (2021). Published date: 2021-09-01WOS: 000687151100006

Ø Yongbao Chen, Lixin Zhang*, Peng Xu, Alessandra Di Gangi. Electricity demand response schemes in China: Pilot study and future outlook. Energy (SCI二区TOP, IF: 8.857, ISSN: 0360-5442) 224, (2021). Published date: 2021-06-01WOS: 000505271100064

Ø Yongbao Chen, Peng Xu*, Zhe Chen, Hongxin Wang, Huajing Sha, Ying Ji,Yongming Zhang, Qiang Dou, Sheng Wang. Experimental investigation of demand response potential of buildings:Combined passive thermal mass and active storage. Applied Energy(SCI一区Top, IF:11.446, ISSN: 0306-2619) 280, (2020) 115956. Published date: 2020-12-12WOS:000594127400002

Ø Yongbao Chen, Zhe Chen, Peng Xu*, Weilin Li, Huajing Sha, Zhiwei Yang. Quantification of electricity flexibility in demand response: office building case study. Energy(SCI一区Top)188, (2019) 116054. IF:5.537, publish date 2019-12-01

Ø Yongbao Chen, Aditya Desai, Ferdinand Schmidt, Peng Xu*. Electricity demand flexibility performance of a sorption-assisted water storage on building heating. Applied Thermal Engineering, 156(2019),640652. IF:4.026, publish date 2019-06-25

Ø Yongbao Chen, Peng Xu*, Jiefan Gu, Ferdinand Schmidt, Weilin Li, Measures to improve energy demand flexibility in buildings for demand response (DR): A review, Energy and buildings, 177(2018),125139. IF:4.495, publish date 2018-10-15

Ø Yongbao Chen, Peng Xu*, Yiyi Chu, Weilin Li, Yuntao Wu, Lizhou Ni, Yi Bao, Kun Wang, Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings, Applied Energy, 195 (2017) 659670. (ESI高被引论文), IF:8.426, publish date 2017-06-01

Ø Lixin Zhang*, Yongbao Chen, Ming Gao, Xin Li, Zonghu Lin,  Validation of electronic anti-fouling technology in the spray water side of evaporative cooler, International Journal of Heat and Mass Transfer, 93(2016)624-628. IF:4.346, publish date 2016-02-01

Ø Huilong Wang, Yongbao Chen, Jing Kang, Zhikun Ding, Han Zhu*. An XGBoost-Based predictive control strategy for HVAC systems in providing day-ahead demand response. Building and Environment , 238 (2023). 

Ø Huilong Wang, Zhikun Ding, Rui Tang, Yongbao Chen, Cheng Fan, Jiayuan Wang. A machine learning-based control strategy for improved performance of HVAC systems in providing large capacity of frequency regulation service. Applied Energy 326, (2022). Published date: 2022-11-15

Ø Sha, Huajing, Peng Xu*, Zhiwei Yang, Yongbao Chen, and Jixu Tang. Overview of computational intelligence for building energy system design. Renewable and Sustainable Energy Reviews, 108 (2019): 76-90. IF:10.556, publish date 2019/7/1

Ø Sha, Huajing, Peng Xu*, Chonghe Hu, Zhiling Li, Yongbao Chen, and Zhe Chen. A simplified HVAC energy prediction method based on degree-day. Sustainable Cities and Society, 51 (2019): 101698. IF:4.624, publish date 2019/11/1

Ø Gu Jiefan, Xu Peng*, Pang Zhihong, Chen Yongbao, Ji Ying, Chen Zhe. Extracting typical occupancy data of different buildings from mobile positioning data. Energy and buildings (SCI, JCR一区), 180 (2018),135145. IF:4.495, publish date 2018/12/1

Ø Weilin Li, Yongbao Chen, Peng Xu*, Chirag Joshi, Ferdinand SchmidtResearch on the performance of adsorption heat pump in winter demand response, Science & Technology for the Built Environment, 23(2017),449456. IF:1.199, publish date 2017/4/3

  Ø 席鹏飞, 章立新*, 张坤龙, 陈权, 周庆权, 高明, 刘婧楠, 陈永保, 潘旭光, 陈婷婷. 基于BP神经网络的横流式蒸发冷凝器鼓泡式板片传热性能预测, 暖通空调,51,04(2021), 136-140.

  Ø 顾洁帆, 许鹏*, 姬颖, 陈永保. 基于EnergyPlus软件的大型建筑空调末端模型简化, 暖通空调,47,10(2017), 90-95.

  Ø 章立新*, 陈永保, 张林文, 叶军, 刘峰. 一种冷却塔飘水率测量方法的试验研究, 暖通空调,47,08(2014), 70-73.

  Ø 章立新*, 刘婧楠, 林宗虎, 尹证, 范志远, 刘跃, 陈永保, 李瑞雄. 毛细管网在闭式冷却塔中的应用分析, 制冷学报,34,06(2013), 48-51.

授权专利:

Ø 一种基于建筑基础信息的建筑电力需求弹性快速量化方法, 2020-12-08, 中国, 202010753453.7.

Ø 一种基于建筑电力需求响应的多目标控制方法, 2020-11-03, 中国, 202010751696.7.

Ø 一种用于可再生能源互补利用的一体化集成控制装置, 2020-07-28, 中国, ZL 2017 1 0286123.X.

Ø 基于人员满意度的建筑运营成本测算软件, 2020-6-10, 2020SR0669467, 软件著作权.

Ø 一种组合式相变装置及采用该蓄冷装置的空调系统, 2018-2-9, 中国, ZL 2016 10547950.5.

Ø 用于冷却塔防壁流喷头, 2016-9-14, 中国, ZL201410269171.4.



荣誉与奖励

2023年,Bsport体育在线官网“乘风学者”

2023,Bsport体育在线官网“志远学者”

2023UNiLAB智慧能源系统大数据分析赛,UNiLAB,2023.02.20,一等奖.

2023AI大师杯,智慧建筑负荷预测,施耐德电气,2023.05,一等奖.

2022基于柔性负荷任务的需量优化策略挑战赛, AI全球开发者大赛,科大讯飞,2022.11.22, 一等奖.

2022年度十大人工智能新锐团队,AI全球开发者大赛,科大讯飞,2022.11.22,荣誉称号.

2022年度国际埃尼奖( Eni Award提名奖,Eni scientific committee,2022.11,国际奖提名.

2022山东省第三届数据应用创新创业大赛,山东省大数据局,2022.05.20,三等奖.

2021MathorCup高校数学建模挑战赛,中国优选法统筹法与经济数学研究会,2022.03,三等奖,指导老师.

2021第十四届全国大学生节能减排大赛,2021.08,三等奖,指导老师.

2020上海市“超级博士后”激励人才计划,2020334,上海市人力资源和社会保障局,2020.12.


主讲课程

r  《能源系统与人工智能》

《能源大数据建模技术与实践》

——欢迎对人工智能&机器学习,大数据建模等领域感兴趣的同学报考,并期待你的加入,you will be the best!


《 




搜索
您想要找的